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Abstract 

Background and Objectives 

The Next Generation (NexGen) of Risk Assessment effort is a multiyear collaboration 

among several agencies and institutions evaluating new, potentially more efficient approaches to 

environmental health risk assessment. This paper reviews key NexGen findings and identifies 

strategic research directions. 

Methods 

The focus was to evaluate how new knowledge from recent advances in molecular, 

computational, and systems biology might support risk management decisions. Risk assessment 

prototypes demonstrated application of new data and methods to decision contexts with 

increasing regulatory impacts. Data types included transcriptomics, genomics, and proteomics; 

methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, 

short-duration bioassays, and quantitative structure activity relationship modeling. 

Conclusions 

NexGen has fostered extensive discussion among risk scientists and managers and 

improved confidence in interpreting and applying new data streams in risk-based 

chemical prioritization and screening, and risk assessment. NexGen has advanced our 

ability to apply new science by more rapidly identifying chemicals and exposures of 

potential concern via knowledge mining and use of high- and medium-throughput 

bioassays; helping characterize mechanisms of action that influence conclusions about 

causality and exposure-response; and providing conceptual models to evaluate factors 

affecting susceptibility and cumulative risk. 
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Advancing the Next Generation of Risk Assessment 

Introduction 

Background 

Advances in molecular and cell biology provide new insights into the etiology of 

human disease, largely by evaluating molecular events that influence cell function and 

interactions (Audouze et al. 2013; Hood and Tian 2012; McCullough et al. 2014; McHale 

et al. 2012; Thomas et al. 2014). High-throughput/high-content (HT/HC) assays and 

robotic implementation are generating data streams at unprecedented speeds. 

Computational tools, automated analytical methods (bioinformatics), and systems biology 

approaches are being developed to organize and interpret the information (Attene-Ramos 

et al. 2013; Freitas et al. 2014; Hsu et al. 2014; Huang et al. 2014; Judson et al. 2012; 

Judson et al. 2013; Judson et al. 2014). Toxicity testing and risk assessment will benefit 

greatly from these advances (Krewski et al. 2014; NRC 2007). 

The National Library of Medicine, Tox21, and ToxCast are among the efforts 

compiling, organizing, managing, and storing these data to better understand determinants 

of population health (Krewski et al. 2014; NRC 2011) and to help answer such questions 

as: Which chemicals are environmentally better choices in commerce? Why do 

individuals and specific subpopulations respond differently to chemical exposures? What 

happens when people are exposed to low levels of multiple chemicals? How do factors 

like poverty and preexisting illness influence public health risk? How might evaluating 

and applying these data, methods, and models support environmental health decisions? 

To evaluate how new data types and approaches can inform environmental health 
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risk assessments, the U.S. Environmental Protection Agency (EPA) collaborated with 

several U.S. and international agencies and organizations (Supplemental Material, Table 

S1) to consider the state of science and to develop case studies (illustrative prototypes) 

demonstrating various approaches that investigators could apply to different risk 

management problems. Our goal was to provide examples that would promote discussion 

in the risk assessment, risk management, and stakeholder communities, and that would 

facilitate the transition from strategy to practical application. This paper summarizes 

these efforts. A more detailed report is also available (EPA 2014b). 

Objectives 

Our specific objectives were to test whether these new data sources and methods 

would help identify specific patterns of molecular events that are (1) associated with 

impacts of chemical exposures; (2) exposure-dose dependent within the range of 

environmental exposures; (3) related to such risk factors as genomic variants, chemical 

and nonchemical stressor coexposures; or (4) useful as improved indicators of adverse 

health effects and chemical potency. We also considered how new types of assessments 

might address differing risk management needs or risk context and help develop decision 

rules for integrating and applying the available data. 

Methods 

We evaluated and integrated diverse types of data and methods to determine if, and how, 

advanced biological data would better inform risk assessments. 

Preparation for Prototype Development 

To establish the foundation for this effort, we (1) worked with EPA risk managers 
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to identify research needs and develop a strategy for the overall approach (Cote et al. 

2012); (2) consulted with experts on the concepts for the prototypes (EPA 2010); (3) held 

a stakeholder conference to inform the public about upcoming activities and to solicit 

advice (EPA 2011); and (4) developed a framework articulating the guiding principles for 

NexGen (Krewski et al. 2014). 

Risk Assessments Targeted to Various Decision Contexts 

We developed seven prototypes illustrating three decision contexts generally 

representing environmental challenges risk managers face: (1) major scope decisions, 

usually regulatory decision-making, generally aimed at nationwide exposures and 

associated risks; (2) limited scope decisions, often nonregulatory decision-making, 

generally aimed at limited exposure, hazard, or data situations; and (3) chemical 

screening and prioritization for further testing, research, or assessment, or for emergency 

response (Figure 1). These generalized decision contexts do not, and are not meant to, 

capture all decisions or situational nuances risk managers face. 

Study Selection 

Establishing systematic review criteria for study selection helps ensure 

reproducibility, transparency, and scientific acceptability of regulatory actions (DHHS 

2014; Meek et al. 2014; NRC 2014; Rhomberg et al. 2013; Rooney et al. 2014).Our 

criteria were similar to those used for traditional data, augmented with additional criteria 

specifically applicable to new methodologies (Bourdon-Lacombe et al. In press; 

McConnell et al. 2014). Rapidly evolving best practices for advanced biology and certain 

reporting requirements led many initially considered studies to be deemed inadequate for 
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risk assessment purposes (EPA 2013a). 

The Prototypes 

Table 1 (Krewski et al. 2014) summarizes the methods considered for the 

prototypes. Details on the methods and results are provided in EPA (2014a). 

Major-scope Assessment Prototypes 

Three major-scope prototypes explored how toxicogenomic studies of exposed 

human populations can inform risk assessment by characterizing early key events in the 

biological cascade that results in adverse outcomes, biomarkers of exposure and effects, 

factors contributing to population variability and susceptibility, and the low exposure-

response relationship. We developed these prototypes as a proof of concept, and as 

examples of how new data types could better inform chemical assessments based on 

robust traditional data. 

We evaluated transcriptomic data (epidemiological or clinical) in the range of 

environmental exposures for three chemicals: (1) benzene and other leukemogens (McHale et al. 

2011; McHale et al. 2012; Smith et al. 2011; R Thomas et al. 2012; R Thomas et al. 2013; 

Thomas et al. 2014); (2) ozone (EPA 2013b; Hatch et al. 2014; McCullough et al. 2014); and 

(3) polycyclic aromatic hydrocarbons (PAHs), including tobacco smoke and benzo[a]pyrene 

(DHHS 2014; EPA 2013a; IARC 2010). We also considered genomic, proteomic, and 

epigenomic data as available, and molecular animal and in vitro data for benzene and B[a]P 

(EPA 2013a; French et al. 2015). We evaluated exposures for benzene of <0.1 to 10 parts per 

million (ppm) and ozone of 0.5 ppm for 2 hours. We used individual measures of exposure-dose 
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for benzene and ozone (benzene urinary metabolites and 1802) (Hatch et al. 2014; Vermeulen et 

al. 2004). For PAH exposures, we used self-reported smoking. The PAH/tobacco smoke 

prototype focused on pathway mining of existing human microarray data from the Gene 

Expression Omnibus and ArrayExpress (EMBL-EBI 2015; NCBI 2015). The toxicogenomics 

data were anchored qualitatively and quantitatively to known health outcomes associated with 

these chemicals, specifically hematotoxicity and leukemia (benzene and other known 

leukemogens), lung inflammation and injury (ozone), and lung cancer (PAHs). These data-rich 

associations therefore enabled us to draw on a wealth of chemical- and disease-specific data to 

help characterize relationships among upstream molecular changes, downstream cellular events, 

and public health outcomes. Thus, the potential role of toxicogenomics in hazard identification 

and dose-response assessment was explored. 

Limited-scope Assessment Prototypes 

These prototypes explored approaches falling between molecular human clinical 

and epidemiology studies (above) and in vitro, HT screening bioassays (below) in terms 

of confidence in the data to characterize public health risks, resources expended to collect 

data, and the number of chemicals that can be evaluated in a given period. We considered 

three approaches to limited-scope assessment: (1) knowledge mining of large health 

databases (focusing on human tissue biomonitoring and diabetes data from NHANES 

[National Health and Nutrition Examination Survey] data) (Bell and Edwards 2015; 

DeWoskin et al. 2014; EPA 2014b; Patel et al. 2012; Patel et al. 2013a; Thayer et al. 

2012); (2) short-duration, in vivo exposures using alternative (nonmammalian) species 

(focusing on the thyroid hormone disruptor mechanism, and zebrafish developmental 
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outcomes for several hundred chemicals) (Padilla et al. 2012; Perkins et al. 2013; Sipes et 

al. 2011a; Sipes et al. 2011b; Thienpont et al. 2011; Villeneuve et al. 2014); and (3) short-

duration, in vivo exposure rodent studies that correlated transcriptomic alterations with 

cancer and noncancer outcomes as determined in traditional bioassays (Thomas et al. 

2011; RS Thomas et al. 2012; RS Thomas et al. 2013a; RS Thomas et al. 2013c). 

Advantages of the limited-scope approaches compared to HT in vitro approaches include 

intact metabolism and intact cell and tissue interactions, and potential to measure adverse 

health outcomes, including complex outcomes such as altered behavior and development. 

Screening and Prioritization Prototypes 

The two screening and prioritization prototypes are (1) quantitative structure 

activity relationship (QSAR) models and use of analogous chemicals to expand available 

information (also called "read-across") (EPA 2015b; Golbraikh et al. 2012; OECD 2014; 

Politi et al. 2014; Wang et al. 2011; Wang et al. 2012a); and (2) in vitro cell-based and 

biochemical-based (including enzymatic and ligand-binding) HT screening assays 

[focusing on evaluating thyroid hormone disruptors (Cox et al. 2014; Rotroff et al. 2013; 

Sipes et al. 2011a)]. Of note is that, although QSAR and in vitro assays are illustrated 

separately here, they often are used most effectively in combination. EPA's ToxCast 

program (Judson et al. 2011; Judson et al. 2012; Judson et al. 2013; Judson et al. 2014) 

and the multiagency collaborative Tox21 program (Attene-Ramos et al. 2013; Freitas et 

al. 2014; Hsu et al. 2014; Huang et al. 2014; Tice et al. 2013) provide more information 

on these approaches. Virtual tissue modeling approaches also are discussed (DeWoskin et 

al. 2014; Judson et al. 2011; Judson et al. 2012; Judson et al. 2013; Judson et al. 2014; 
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Kavlock et al. 2012; Kleinstreuer et al. 2014; Knudsen and DeWoskin 2011; Knudsen et 

al. 2013; Sipes et al. 2013). 

Examining Human Variability in Responses 

The data to evaluate variability and susceptibility are usually scant. We evaluated 

several data types to inform this issue: (1) adverse outcome networks to identify 

mechanistic commonalties among leukemogens and lifestyle factors (diet and stress) that 

alter leukemia risks (EPA 2014b; IARC 2012; Smith et al. 2011); (2) altered disease 

incidence in subpopulations having specific genetic polymorphisms (EPA 2014b); (3) 

data for in vitro cells that retain an asthma phenotype in ozone studies (Duncan et al. 

2012); (4) correlated measurements of phenotypic differences among diverse 

subpopulations with different incidences of given exposures [tissue biomonitoring using 

NHANES (EPA 2014b; Patel et al. 2012; Patel et al. 2013a)]; (5) HT in vitro data from 

cell lines with different genetic backgrounds from the 1000 Genomes effort (Attene-

Ramos et al. 2015; Lock et al. 2012; O'Shea et al. 2011); and (6) computational modeling 

in which variability in parameter values is simulated for differences among 

subpopulations (Knudsen and DeWoskin 2011; Shah and Wambaugh 2010). See Zeise et 

al. (2013) for further details. 

Results and Discussion 

The NexGen prototypes show progress in our understanding of health and disease and 

help realize the National Research Council's vision embodied in Toxicity Testing in the 21st 

Century (Krewski et al. 2011; NRC 2007). Since this report was published, toxicity testing and 

risk assessment have begun shifting from the traditional, almost exclusive, use of animal data to 
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using the new approaches the prototypes demonstrate. The new approaches consider a broader 

data array, foster mechanistic understanding of adverse effects, and move toward replacing 

uncertainty factors and extrapolations with data-derived probability distributions. 

In each decision context category, new methods and data types were identified 

that could help inform assessment efforts. Methods illustrated in the screening and 

prioritization (Tier 1) and limited-scope (Tier 2) prototypes originally were designed for 

qualitative evaluation of chemicals. New and integrated approaches, however, are being 

developed to estimate relative potencies and more rapid quantitative toxicity values for 

use in certain decision contexts. 

We used adverse outcome pathways (AOPs) extensively to organize and interpret 

data for most of the prototypes and regard them as critical for linking molecular events to 

apical outcomes. The concept of AOPs and networks has gained considerable traction 

since it was first introduced (Ankley et al. 2010; Davis et al. 2015; Garcia-Reyero 2015; 

Geer et al. 2010; NAS 2012; Tollefsen et al. 2014; Vinken 2013). We use the terms AOP 

and AOP network throughput this paper as they are commonly used among many U.S. 

and European Agencies. 

Data quality and reporting are always critically important. Our data searches 

identified many published studies that we could not use because the data or the reporting 

was not sufficient for use in health risk assessment. This situation derives from the lag 

before best practices are fully implemented in the research community and inconsistent 

application of criteria for data quality and reporting (EPA 2014b; McConnell et al. 2014). 
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Integrating the available data into a coherent analysis is also a challenge. 

Supplemental Material, Table S2 presents an "Illustrative Framework for Evidence 

Integration for New Data Types," focusing on evaluating and integrating evidence and 

drawing conclusions based on inferences. The table bases evidence integration on 

previous works (DHHS 2014; EPA 2013a; Meek et al. 2014; NRC 2014; Rooney et al. 

2014). 

Major-scope Assessment Prototypes (Tier 3) 

We designed the Tier 3 prototypes to determine whether new data types could 

provide results comparable to robust traditional data. We also evaluated whether new data 

types could add to information robust traditional data sets provide. Support for this 

hypothesis and several sources of variability are given below (EPA 2013b, 2014b; 

Esposito et al. 2014; Hatch et al. 2014; McCullough et al. 2014; McHale et al. 2011; 

McHale et al. 2012; Smith et al. 2011; Thomas et al. 2014). Highlights from the 

prototypes include: 

• AOP networks are useful in predicting specific hazards for benzene and other known 

leukemogens (hematotoxicity), ozone (lung inflammation and injury), and PAHs (lung 

cancer). Related chemical and nonchemical stressors (known to cause or exacerbate the 

same adverse health outcome) were shown to perturb various pathways within the same 

disease associated network, but do not always affect the same expressed genes or 

pathway. Hence, overly simplistic descriptions of AOPs could miss the potential for 

network-level interactions. Evidence for a causal relationship between a specific AOP 

and adverse effects includes pharmacologic intervention to block identified pathway 
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changes, use of knock in—out models, or identification of pathway polymorphisms and 

concomitant amelioration of severity or incidence of the specified adverse outcomes. 

• Less well-studied chemicals inducing the same AOP or AOP network could be of 

concern for concomitant health outcomes. Conversely, lack of an apparent mechanistic 

link to an adverse outcome might justify downgrading questionable in vivo data. Thus, 

network-level knowledge often is highly valuable to understand causal mechanisms, help 

integrate evidence, assess potential hazards of well-studied chemicals, provide a basis for 

cumulative assessment by grouping chemical and nonchemical stressors according to 

their common AOP network, and evaluate mechanisms underlying human susceptibility 

(e.g., genetic differences). 

• Biomarkers appropriately anchored to AOPs can help elucidate exposure-dose-response 

relationships as the benzene and ozone prototypes show. Understanding the quantitative 

relationship of any biomarker to exposure and effect requires substantial study. A most 

promising application of biomarkers, however, is the ability to measure events of interest 

directly in environmentally exposed humans—an application revolutionizing 

epidemiology. 

• For benzene, ozone, and theoretically for PAHs, we demonstrated that multiple AOPs 

developed and progressed with increasing exposures. With benzene, gene and pathway 

alterations indicative of impaired immune function occur at all exposure levels evaluated 

(from <0.1 ppm to 10 ppm). At higher concentrations, molecular pathways and effects 

characteristic of more severe toxicity (apoptosis and cell death) begin to emerge. Data 

collection over a range of concentrations thus remains essential when evaluating new 
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data types. Additionally, limited time-course post-exposure data were available for 

ozone; various adverse outcomes involved in lung injury progressed after exposure, 

demonstrating the potential dynamic nature of underlying mechanisms (EPA 2013a; 

McCullough et al. 2014). 

• Chemical exposures resulting in adverse outcomes appear to share AOP networks with 

pathologies of unknown origins (idiopathic or potentially naturally occurring). This 

suggests that chemically induced events might add to naturally occurring backgrounds of 

disease via shared mechanisms (EPA 2014b). As NRC (2009) and Crump et al. (1976) 

discuss, this finding has implications for an assumption of low-dose linearity for cancer 

and noncancer outcomes at the population level. 

• The prototypes helped characterize experimental and organismic factors influencing data 

interpretation, including experimental variability resulting from differing exposure 

concentrations, dosimetry, time courses, experimental techniques, experimental 

paradigms, cell and tissue types, individual genomic profiles, coexposures, and lifestages. 

Identifying causal events without tight control of variability can be difficult even 

knowing the adverse outcome, reinforcing the importance for careful experimentation 

and interpretation when potential outcomes are unknown (EPA 2014b). 

Limited-scope Assessment Prototypes (Tier 2) 

We designed the Tier 2 prototypes to evaluate data from knowledge mining, 

alternative species bioassays, and short-term in vivo studies for identifying potential 

hazards, refining mechanistic understanding, and characterizing the relative potencies of 

thousands of chemicals more rapidly than possible with traditional methods. Confidence 
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in these data generally ranks between Tier 3 and Tier 1 approaches. Highlights from the 

prototypes include: 

• These approaches are faster and less expensive than the molecular human studies noted 

above and traditional chronic animal bioassays. Furthermore, unlike the QSAR models 

and HT screening data (discussed below), the data from in vivo studies are from intact 

organisms with metabolic function, normal architecture (for various cell and tissue 

types), and normal cell-cell, tissue-tissue interactions. The data also can be used to study 

more complex system-level adverse outcomes, such as developmental and 

neurobehavioral outcomes. 

• In the data-mining exercises, specific chemical exposures were associated with altered 

risks for diabetes or prediabetes (e.g., chlorinated organics, heavy metals, selected 

nutrients). We mined exposure data from NHANES human tissue biomonitoring; 

NHANES clinically defined incidence. Additional risk factors—multiple chemical 

exposures and genetic and lifestyle susceptibility traits—were identified (Bell and 

Edwards 2015; EPA 2014b; Patel et al. 2012; Patel et al. 2013a; Patel et al. 2013b). In 

one example, 59 percent of people with high levels of cadmium, lead, and arsenic also 

had markers for diabetes. The data mining results are generally most suitable for 

hypothesis generation because the output only identifies associations among events in 

very large data sets. The availability of biomonitoring data and clinical diagnoses in the 

same individuals, or understanding of mechanisms, however, increases the weight of 

evidence for these data. Others also have provided traditional and computational data that 

support a link between chemical exposure and diabetes (Audouze et al. 2013; Dimas et 
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al. 2014; Inadera 2013; Thayer et al. 2012). 

• Two Tier 2 prototypes demonstrated use of short-duration exposure bioassays in 

alternative species and mammalian species. We evaluated the results with traditional, 

molecular, and computational approaches. Collectively, these bioassays successfully 

identified exposure concentrations associated with adverse outcomes and related key 

events and AOP network alterations linked to adverse effects. These prototypes provided 

data on complex mechanistic behaviors, effects of mixtures, and species-to-species 

similarities and differences, illustrating how these data could be used to evaluate 

potential hazards and chemical potencies (Ankley and Gray 2013; Padilla et al. 2012; 

Painter et al. 2014; Perkins et al. 2013; RS Thomas et al. 2013b; RS Thomas et al. 

2013c). 

Screening and Prioritization Prototypes (Tier 1) 

For the first time, new approaches are being used that can evaluate vast numbers 

of chemicals relatively rapidly. For example, tens of thousands of chemicals the European 

Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals 

(REACH) Legislation covers are being evaluated using QSAR and new types of 

bioassays. The U.S. Tox21 program is screening approximately 8,500 chemicals using 

innovative robotic technology and in vitro bioassays (Tice et al. 2013). Kavlock et al. 

(2012) note that "These tools can probe chemical-biological interactions at fundamental 

levels, focusing on the molecular and cellular pathways that are targets of chemical 

disruption." The QSAR models (Goldsmith et al. 2012; Venkatapathy and Wang 2013; 

2012a; Wang et al. 2012b) and HT in vitro bioassays were used to illustrate the rapid 
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successful screening and prioritization of chemicals (Judson et al. 2013; Kavlock et al. 

2012; Rusyn et al. 2012; Sipes et al. 2013; Tice et al. 2013). Additional insights include: 

• An essential element to evaluating and applying HT data within the risk paradigm is dose 

characterization. Researchers are developing methods using reverse dosimetry to 

extrapolate bioactive concentrations in in vitro test systems to the comparable doses for 

in vivo exposure to rodents (or other test species) or to humans (in vitro-to-in vivo 

extrapolation [IVIVE]) (Hubal 2009; Rotroff et al. 2010; Wetmore et al. 2012; Wetmore 

et al. 2013). IVIVE extrapolation supports quantitative comparisons of in vitro toxicity 

results with in vivo bioassay results for estimating dose-response in human exposures. 

• QSAR, in vitro, and in silico methods, are proving useful for screening and ranking large 

numbers of chemicals for further assessment and urgent-response situations where 

traditional data are lacking. Current estimates of human disease risks based exclusively 

on QSAR and in vitro HT screening generally are too uncertain; in silico models, 

however, are improving our understanding of these data. Insights into underlying 

mechanisms of toxicity, and the factors that might contribute to population variability in 

response to chemical exposure (Lock et al. 2012; O'Shea et al. 2011), are also progressing 

from these data streams and increasing their utility for understanding risks. 

Caveats Pertaining to Applying New Data Types in Risk Assessment 

Exposure and adverse outcomes often can be associated with hundreds to 

thousands of gene changes, not all of which are causal (Mendrick 2011). Associative data 

can "suggest" a causal relationship between exposure and adverse health outcomes. 
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Criteria to move from "suggestive" to "likely" causal include meta-analyses of multiple, 

independent studies yielding similar results; experimental evidence of causative 

relationships between key events in AOP networks and consequent adverse health 

outcomes; or combinations of consistent, coherent traditional and new data types. The 

prototypes demonstrated how different types of evidence in each decision support 

category might be characterized with respect to causality and evidence integration (EPA 

2013b, 2014a; NRC 2014). Additional caveats are described below. Many of these 

concerns apply to traditional, as well as new data types. 

• Cell type, tissue, individual, subpopulation, strain, species, and test system can affect 

how specific alterations in molecular events manifest as adverse outcomes or disease, 

even when the molecular signature is the same. This phenomenon likely is due, at least in 

part, to dosimetry, epigenomic differences, and genomic plasticity, which assessments 

should consider whenever feasible. 

• For many chemicals, metabolism is critical to toxicity. That most HT in vitro test systems 

have limited or no metabolic competence should be considered. Although researchers are 

evaluating various approaches to add or enhance metabolic capability, satisfactory 

solutions for routine screening of larger numbers of chemicals are not yet available. 

Consequently, although positive results are informative, negative results should not yet 

be interpreted as a lack of toxicity. 

• Molecular profiles appear to be both dose and time dependent. Predicting adverse 

outcomes based only on "snapshots" of biological events can therefore be challenging. 

Focusing on profiles associated with environmentally relevant exposures should improve 
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predictions. Some signatures do appear stable over time, however, and might also serve 

as reliable indicators of chronic outcomes (RS Thomas et al. 2013c). 

• Gene expression data contain much uncertainty, as messenger ribonucleic acid 

expression levels cannot be used to infer protein activity directly. These data alone could 

be suitable for ranking and screening and used in assessments to complement other 

mechanistic data. 

• Our current ability to monitor multiple molecular processes (genomics, 

transcriptomics, proteomics, and epigenomics) in a single study is very limited, primarily 

due to cost. This hampers biological integration and limits our understanding of how 

chemicals influence complex biological systems. 

• Only a few chemicals represented in the current literature have biological data 

adequate to support regulatory risk assessments, due primarily to experimental design and 

reporting issues. This limitation reinforces the need for systematic review. 

• A major challenge in using molecular data in risk assessment is how to use the 

data to improve predictions of adverse effects in humans. For example, how do changes 

in molecular events affect cells, changes in cells affect tissues and organs, and changes in 

organs affect the whole body? Researchers are collecting large amounts of HT/HC 

screening data on molecular-level effects, and the body of information on diseases and 

disease outcomes is substantial. Very sparse chemical-specific data are available, 

however, on intermediate levels of organization and on the sequence of cellular-level 

disruption of normal biology to effects at higher organizational levels. Even so, 

tremendous strides are being made in generating disease-specific information. 
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• Characterizing population response variability among individuals is a major 

challenge, given the many sources of inherent biological variability (e.g., genetic 

differences) and extrinsic influences (e.g., lifestyle, poverty, multiple chemical 

exposures). Each chemical exposure-health outcome pair involves combinations of these 

sources, and different decision contexts present distinct needs regarding the 

identification—and extent of characterization—of interindividual variability in the 

human population. New approaches to examining variability in responses include (1) 

computational modeling, in which variability in parameter values is simulated and 

differences among subpopulations are explored (Diaz Ochoa et al. 2012; Knudsen and 

DeWoskin 2011; Shah and Wambaugh 2010); (2) HT in vitro data analysis of cell lines 

with different genetic backgrounds from the 1000 Genomes effort (Lock et al. 2012; 

O'Shea et al. 2011); (3) in vivo studies in genetically diverse strains of rodents to identify 

genetic determinants of susceptibility (French et al. 2015; NIEHS 2015c); (4) 

comprehensive scanning of gene coding regions in diverse individuals to examine the 

relationships among environmental exposures, interindividual sequence variation in 

human genes, and population disease risks (Mortensen and Euling 2013; NIEHS 2015a); 

(5) genome-wide association studies to uncover genomic loci that might contribute to risk 

of disease (NHGRI 2015; Wright et al. 2012); and (6) association studies correlating 

phenotypic differences among diverse populations with expression patterns for groups of 

genes based on coexpression (Friend 2013; Patel et al. 2012; Patel et al. 2013a; Weiss et 

al. 2012). Additionally, understanding of the contribution of epigenomics to disease is 

advancing rapidly (Ghantous et al. 2015). 
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• Verifying toxicity testing schemes and computational models that are more 

efficient is essential for using these new data and approaches for risk-based decisions. 

Central to this effort are a framework and criteria for determining whether the new data 

types are adequate for various types of decisions. The level of certainty needed in the 

data varies with their intended use because inaccurate results have increasing 

consequences and costs as decisions progress from screening, to further testing, to what 

safe chemical levels are, to what regulatory (or mitigation) actions should be taken 

(Crawford-Brown 2013). Traditional "validation" approaches that evaluate conventional 

assay and testing structures do not adequately address the potential uses of these new data 

and methods and would require years to implement (Judson et al. 2013). Thus, as the 

technology for rapid, efficient, robust hazard testing advances, the verification process 

also must advance to ensure confidence in their use. Clear and transparent articulation of 

these decision considerations are essential to the acceptance of, and support for, 

assessment results and in the overall evidence integration. 

Based on the lessons learned in the NexGen program and elsewhere, several new types of 

high- and medium-throughput assessments are being advanced. Table 2 shows how 

characteristics of "fit-for-purpose" assessments could be tailored to support three 

illustrative decision-context categories. The table lists potential uses for NexGen 

assessments, data sources and types in different assessment categories, exposure 

paradigms used, incorporation of toxicokinetics, use of traditional data, hazard 

characterization, potency metrics, inferences drawn about the causal associations between 

exposures and adverse outcomes, the numbers of chemicals that can be assessed, and the 

time to conduct any given assessment. 
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Research Needs 

Enhancing our understanding of complex chemical and biological interactions at various 

levels of biological organization requires integrating computational research with 

strategic laboratory studies to advance available models and accelerate application of new 

data in risk assessment. We suggest focusing on the following specific areas: 

• Development of reliable, molecular biomarkers and bioindicators representing a wide 

variety of chemical exposures and key events of pathogenesis for building confidence in 

the characterization of key events used to construct an AOP. 

• Identification and understanding of AOP network interactions among different levels of 

organization for observed key events (genes, proteins, cells, tissues, organs, individuals, 

populations and communities), including characterization of compensatory responses and 

their prognostic value for different adverse outcomes or disease states. 

• Collection of data and development of methods for reverse toxicokinetics to extrapolate 

concentrations used in cellular and cell-free systems to in vivo tissue doses and 

exposures; nonaqueous in vitro exposure methods for chemicals present as gases or as 

airborne particles; and adjusting for intra- and interspecies differences when assessing 

potential human effects based on nonhuman toxicity data. 

• Approaches for grouping chemical and nonchemical stressors based on common key 

events within AOPs to enable cumulative risk assessment; considerations for source 

apportionment with respect to exposures for cumulative risk assessment. 

• Evaluation of individual human variability due to lifestage vulnerabilities, genetic 
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differences, preexisting disease and exposure, or adaptive and compensatory capabilities; 

and development of techniques to incorporate this variability into population-level risk 

assessment. 

Conclusions 

A revolution in molecular, computational, and systems biology is rapidly 

advancing our understanding of what causes disease and who becomes affected, and the 

role of environmental factors on public health. This information is just beginning to result 

in innovative, more efficient approaches to toxicity testing and risk assessment. This 

paper summarizes recent, multiorganizational efforts to understand and apply emerging 

science in a transparent and scientifically robust manner. We anticipate these novel 

methods will provide a more complete understanding of the biological underpinnings of 

health risks and, also, methods and data to help evaluate the tens of thousands of 

unaddressed chemicals in the nation (EPA 2015a). The overarching challenge to risk 

assessors is to obtain and interpret sufficient data for quick and efficient assessment to 

support decisions that protect public health and the environment. The ultimate goal is to 

develop safer chemicals and to better manage risks to public health and the environment. 

The prototypes demonstrate how new data can be used to help address these challenges. 

Ongoing efforts to advance toxicity testing and risk assessment include: 

• Thousands of chemicals, previously having no or very limited traditional data, are being 

assessed based on similarities in physical-chemical structure to known toxicants (QSAR 

modeling) and on the results of rapid, robotically conducted in vitro bioassays. These 

evaluations will help prioritize testing, research, and assessment, and in emergency 
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response situations. 

• Hundreds of chemicals are being evaluated by using computational analyses of large 

primary databases held in public repositories and by identifying the most important 

findings in the burgeoning literature. These efforts are playing a central role in 

developing knowledge about the potential toxicity of chemicals and the causes of disease. 

These approaches, in combination with high throughput approaches, could be used to 

support limited scope assessments or to augment robust traditional data-based 

assessments. 

• Developing, innovative, targeted testing approaches that combine short-duration in vivo 

bioassays and HT approaches will provide even more robust information for testing and 

assessment. 

• Finally, a variety of new methods are addressing the formidable challenges of 

characterizing cumulative effects from exposure to multiple chemical and nonchemical 

stressors, susceptible subpopulations, and low-dose responses, primarily based on 

improving mechanistic understanding of adverse health effects. 

Near-term efforts include developing additional prototypes for public input and peer 

review and providing more opportunities to solicit stakeholder comments and 

participation. EPA is developing a verification process for new methods and data types 

that focus on integrating the evidence into various decision contexts for use by risk 

assessors. The goal is to increase confidence for using these new approaches in risk 

assessment. Significant scientific gaps identified in the completed and ongoing prototypes 

are helping guide future research plans. 
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We anticipate the prototype demonstrations will help overcome the significant logistical and 

methodological challenges in interpreting and using these new data and methods in risk 

assessment. For now, major chemical assessments will continue to be driven primarily by 

traditional data but with increasing augmentation with the new types of data. EPA risk managers 

and the risk assessment community at large will continue to be informed of the new tools and 

methods being developed with an emphasis on high-quality science and transparency. 

Historically difficult risk assessment questions that this new and emerging knowledge are likely 

to inform include: Why do individual and specific populations respond differently to 

environmental exposures? Why are children at greater risk for certain exposures and effects? 

What happens when people are exposed to mixtures that contain very low levels of individual 

chemicals, such as those commonly found in the environment? How do other environmental 

factors like poverty and preexisting health conditions alter the response to chemical exposures? 

These are just some of issues that NexGen assessments will help address to improve the 

identification of safer chemicals and reduce risk from exposures to hazardous chemicals in the 

environment. 
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Table 1. Prototype use of new scientific tools and techniques (adapted from Krewski et al. 2014) 

Decision-context 
category 

Screening and 
prioritization 

Limited-scope 
assessments 

Major-scope 
assessments 

Hazard identification and dose-response assessment methods 

Quantitative structure 
activity relationship 
models 

• • 

Pathway analysis N  N  

High-throughput in vitro 
assays • • 

High-content omics 
assays • 

Biomarkers of effect • 

Molecular and genetic 
population-based studies 

Dosimetry and exposure assessment methods 

In vitro-to-in vivo 
extrapolation • • 

Phannacokinetic models 
and dosimetry • • • 

Biomarkers of exposure • 

Cross-cutting assessment methods 

Adverse outcome 
pathways • • 

B io info rmat ics and 
computational biology • • • 

Systems biology N  N  

Functional genomics N  
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Table 2. Possible characteristics of fit-for-purpose assessments matched to illustrative decision-
context categories. 

Characteristics Illustrative decision-context categories 
Screening and 
prioritization 

Limited-scope 
assessments 

Major-scope 
assessments 

Uses of NexGen 
assessments 

Screening chemicals 
with no data other 
than QSAR or HT 
data, e.g., 

• Queuing for research, 
testing, or assessment 

• Urgent or emergency 
response 

Generally 
nonregulatory 
decision-making, 
e.g., 

• Urban air toxics 
• Potential water 

contaminants 
• Hazardous waste and 

superfund chemicals 
• Urgent or emergency 

response 

Often regulatory decision- 
making, e.g., 

• National risk assessments 
• Community risk assessment 
• Special problems of national 

concern 

Data sources EPA databases such as 
ACToR and 
ToxCast; PubChem 

Large public data and 
literature 
repositories (e.g., 
NIH PubChem, 
BioSystems, 
NHANES, 
European Array 
Express) 

All sources of policy- 
relevant data 

New data types 
(Also uses the data 
from column to left) 

QSAR, high-throughput 
in vitro screening 
assays, read- across, 
AOP development 

High-content assays, 
medium throughput 
assays, knowledge- 
mined large data 
sets, AOP 
development 

Molecular epidemiology, 
clinical and animal 
studies, AOP 
network development 

Exposure 
paradigms of 
studies considered 

In vitro, in silico All relevant All relevant 

Metabolism in test 
systems 

Some to none Partial to intact Intact 

Incorporation of 
toxicokinetics 

Reverse toxicokinetic models Reverse toxicokinetics 
models, biomonitoring 

Dosimetry and PK modeling, 
biomonitoring 

Consideration of 
human variability 
and susceptibility 

In vitro methods available In vitro and in vivo methods 
available 

In vivo methods available 

Use of traditional 
in vivo data 

In vitro assays anchored to 
pesticide registration and 
pharmaceutical data 

None to limited; especially 
can be used in AOP 
development 

New data types augment 
traditional; traditional data 
currently remain basis for 
assessment 

Hazards Nonspecific Nonspecific to identified Identified 

Potency metrics Relative rankings based on 
QSAR or HT toxicity values 

Relative rankings and 
toxicity values 

Risk distributions, cumulative 
& community risks 

Likely strength of 
evidence linking 
exposure to effect 

Suggestive Suggestive to likely Suggestive to known 

Numbers of 
chemicals that can 

10,000s 100s-1000s 100s 
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be assessed 
Time to conduct 
assessment 

Hours—Days Hours—Weeks Days—Years 

QSAR = quantitative structure activity relationship; HT = high throughput, EPA = U.S. Environmental Protection 
Agency, ACToR = Aggregated Computational Toxicology Resource (EPA), ToxCast = Toxicity Forecaster, NIH = 

Figure 1. Three broad decision-context categories are shown across the top (white type), below 
which are the seven "fit-for-purpose" prototypes developed for this effort (black type). From left 
to right in Figure 1, the amount of traditional toxicological data available for assessment (e.g., in 
vivo rodent toxicity data, epidemiology data) and the confidence in the assessment conclusions 
decrease but the number of chemicals that can be evaluated increases markedly. PAHs = 
Polycyclic aromatic hydrocarbons; B[a]P = Benzo[a] pyrene. 

National Institutes of Health, NHANES = National Health and Nutrition Examination Survey, AOP = adverse 
outcome pathway, PK = pharmacokinetic 
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Figure 2. Effects of variability in (A) pharmacokinetics (PK), (B) pharmacodynamics (PD), 
(C) background/exposures, and (D) endogenous concentrations. In (A) and (B), individuals differ in PK or PD 
parameters. In (C) and (D), individuals have different initial baseline conditions (e.g., exposure to sources 
outside of the risk management decisions context; endogenously produced compounds) (Zeise et al. 2013). 
Reproduced with permission from Environmental Health Perspectives. 
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